\(\int x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx\) [67]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 118 \[ \int x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=\frac {b x \sqrt {d-c^2 d x^2}}{3 c \sqrt {-1+c x} \sqrt {1+c x}}-\frac {b c x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \text {arccosh}(c x))}{3 c^2 d} \]

[Out]

-1/3*(-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/c^2/d+1/3*b*x*(-c^2*d*x^2+d)^(1/2)/c/(c*x-1)^(1/2)/(c*x+1)^(1/2)-
1/9*b*c*x^3*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {5914, 41} \[ \int x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \text {arccosh}(c x))}{3 c^2 d}+\frac {b x \sqrt {d-c^2 d x^2}}{3 c \sqrt {c x-1} \sqrt {c x+1}}-\frac {b c x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {c x-1} \sqrt {c x+1}} \]

[In]

Int[x*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]),x]

[Out]

(b*x*Sqrt[d - c^2*d*x^2])/(3*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (b*c*x^3*Sqrt[d - c^2*d*x^2])/(9*Sqrt[-1 + c*x]
*Sqrt[1 + c*x]) - ((d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x]))/(3*c^2*d)

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 5914

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^
(p + 1)*((a + b*ArcCosh[c*x])^n/(2*e*(p + 1))), x] - Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*
(-1 + c*x)^p)], Int[(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a,
 b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \text {arccosh}(c x))}{3 c^2 d}-\frac {\left (b \sqrt {d-c^2 d x^2}\right ) \int (-1+c x) (1+c x) \, dx}{3 c \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \text {arccosh}(c x))}{3 c^2 d}-\frac {\left (b \sqrt {d-c^2 d x^2}\right ) \int \left (-1+c^2 x^2\right ) \, dx}{3 c \sqrt {-1+c x} \sqrt {1+c x}} \\ & = \frac {b x \sqrt {d-c^2 d x^2}}{3 c \sqrt {-1+c x} \sqrt {1+c x}}-\frac {b c x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \text {arccosh}(c x))}{3 c^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.83 \[ \int x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=\frac {\sqrt {d-c^2 d x^2} \left (b c x \sqrt {-1+c x} \sqrt {1+c x} \left (3-c^2 x^2\right )+3 a \left (-1+c^2 x^2\right )^2+3 b \left (-1+c^2 x^2\right )^2 \text {arccosh}(c x)\right )}{9 c^2 \left (-1+c^2 x^2\right )} \]

[In]

Integrate[x*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]),x]

[Out]

(Sqrt[d - c^2*d*x^2]*(b*c*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(3 - c^2*x^2) + 3*a*(-1 + c^2*x^2)^2 + 3*b*(-1 + c^2*
x^2)^2*ArcCosh[c*x]))/(9*c^2*(-1 + c^2*x^2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(355\) vs. \(2(98)=196\).

Time = 0.51 (sec) , antiderivative size = 356, normalized size of antiderivative = 3.02

method result size
default \(-\frac {a \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{3 c^{2} d}+b \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 c^{4} x^{4}-5 c^{2} x^{2}+4 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{3} x^{3}-3 \sqrt {c x -1}\, \sqrt {c x +1}\, c x +1\right ) \left (-1+3 \,\operatorname {arccosh}\left (c x \right )\right )}{72 \left (c x +1\right ) c^{2} \left (c x -1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (-1+\operatorname {arccosh}\left (c x \right )\right )}{8 \left (c x +1\right ) c^{2} \left (c x -1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (1+\operatorname {arccosh}\left (c x \right )\right )}{8 \left (c x +1\right ) c^{2} \left (c x -1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-4 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{3} x^{3}+4 c^{4} x^{4}+3 \sqrt {c x -1}\, \sqrt {c x +1}\, c x -5 c^{2} x^{2}+1\right ) \left (1+3 \,\operatorname {arccosh}\left (c x \right )\right )}{72 \left (c x +1\right ) c^{2} \left (c x -1\right )}\right )\) \(356\)
parts \(-\frac {a \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{3 c^{2} d}+b \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 c^{4} x^{4}-5 c^{2} x^{2}+4 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{3} x^{3}-3 \sqrt {c x -1}\, \sqrt {c x +1}\, c x +1\right ) \left (-1+3 \,\operatorname {arccosh}\left (c x \right )\right )}{72 \left (c x +1\right ) c^{2} \left (c x -1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (-1+\operatorname {arccosh}\left (c x \right )\right )}{8 \left (c x +1\right ) c^{2} \left (c x -1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (1+\operatorname {arccosh}\left (c x \right )\right )}{8 \left (c x +1\right ) c^{2} \left (c x -1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-4 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{3} x^{3}+4 c^{4} x^{4}+3 \sqrt {c x -1}\, \sqrt {c x +1}\, c x -5 c^{2} x^{2}+1\right ) \left (1+3 \,\operatorname {arccosh}\left (c x \right )\right )}{72 \left (c x +1\right ) c^{2} \left (c x -1\right )}\right )\) \(356\)

[In]

int(x*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*a*(-c^2*d*x^2+d)^(3/2)/c^2/d+b*(1/72*(-d*(c^2*x^2-1))^(1/2)*(4*c^4*x^4-5*c^2*x^2+4*(c*x-1)^(1/2)*(c*x+1)^
(1/2)*c^3*x^3-3*(c*x-1)^(1/2)*(c*x+1)^(1/2)*c*x+1)*(-1+3*arccosh(c*x))/(c*x+1)/c^2/(c*x-1)-1/8*(-d*(c^2*x^2-1)
)^(1/2)*((c*x-1)^(1/2)*(c*x+1)^(1/2)*c*x+c^2*x^2-1)*(-1+arccosh(c*x))/(c*x+1)/c^2/(c*x-1)-1/8*(-d*(c^2*x^2-1))
^(1/2)*(-(c*x-1)^(1/2)*(c*x+1)^(1/2)*c*x+c^2*x^2-1)*(1+arccosh(c*x))/(c*x+1)/c^2/(c*x-1)+1/72*(-d*(c^2*x^2-1))
^(1/2)*(-4*(c*x-1)^(1/2)*(c*x+1)^(1/2)*c^3*x^3+4*c^4*x^4+3*(c*x-1)^(1/2)*(c*x+1)^(1/2)*c*x-5*c^2*x^2+1)*(1+3*a
rccosh(c*x))/(c*x+1)/c^2/(c*x-1))

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.20 \[ \int x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=\frac {3 \, {\left (b c^{4} x^{4} - 2 \, b c^{2} x^{2} + b\right )} \sqrt {-c^{2} d x^{2} + d} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) - {\left (b c^{3} x^{3} - 3 \, b c x\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} + 3 \, {\left (a c^{4} x^{4} - 2 \, a c^{2} x^{2} + a\right )} \sqrt {-c^{2} d x^{2} + d}}{9 \, {\left (c^{4} x^{2} - c^{2}\right )}} \]

[In]

integrate(x*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

1/9*(3*(b*c^4*x^4 - 2*b*c^2*x^2 + b)*sqrt(-c^2*d*x^2 + d)*log(c*x + sqrt(c^2*x^2 - 1)) - (b*c^3*x^3 - 3*b*c*x)
*sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1) + 3*(a*c^4*x^4 - 2*a*c^2*x^2 + a)*sqrt(-c^2*d*x^2 + d))/(c^4*x^2 - c^2
)

Sympy [F]

\[ \int x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=\int x \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )\, dx \]

[In]

integrate(x*(a+b*acosh(c*x))*(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x*sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*acosh(c*x)), x)

Maxima [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.69 \[ \int x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=-\frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} b \operatorname {arcosh}\left (c x\right )}{3 \, c^{2} d} - \frac {{\left (c^{2} \sqrt {-d} d x^{3} - 3 \, \sqrt {-d} d x\right )} b}{9 \, c d} - \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} a}{3 \, c^{2} d} \]

[In]

integrate(x*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-1/3*(-c^2*d*x^2 + d)^(3/2)*b*arccosh(c*x)/(c^2*d) - 1/9*(c^2*sqrt(-d)*d*x^3 - 3*sqrt(-d)*d*x)*b/(c*d) - 1/3*(
-c^2*d*x^2 + d)^(3/2)*a/(c^2*d)

Giac [F(-2)]

Exception generated. \[ \int x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x)) \, dx=\int x\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,\sqrt {d-c^2\,d\,x^2} \,d x \]

[In]

int(x*(a + b*acosh(c*x))*(d - c^2*d*x^2)^(1/2),x)

[Out]

int(x*(a + b*acosh(c*x))*(d - c^2*d*x^2)^(1/2), x)